課程資訊
課程名稱
有限元素法
Finite Element Method 
開課學期
110-1 
授課對象
學程  奈米科技學程  
授課教師
王建凱 
課號
ME7112 
課程識別碼
522 M2570 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期四7,8,9(14:20~17:20) 
上課地點
綜503 
備註
總人數上限:70人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1101ME7112_ 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

ME 7112 is a graduate level course on the theory and implementation of the finite element method (FEM) for solving boundary value problems in solid mechanics. On completing the course of computational methods in solid mechanics, you should be: 1. Familiar with the theoretical foundations of the finite element method; 2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics; 3. Able to apply commercial finite element codes. Experience with MATLAB is necessary. All students will need to write computer programs for this course study. 

課程目標
Goals of ME 7112:
1. Familiar with the theoretical foundations of the finite element method.
2. Able to use and extend your own FEM code to solve boundary and initial value problems in mechanics of solids and physics
3. Able to apply commercial finite element codes. 
課程要求
1、作業與期末報告,無正當理由,一律不予補交。
2、上課不實施點名,出席者請維持良好上課秩序。
3、彈性教學方面,請依提供之補充教材按序學習。
4、學術誠信 (Academic honesty):
Academic honesty is fundamental to the activities and principles of a university. All members of the academic community must be confident that each person's work has been responsibly and honorably acquired, developed, and presented. Any effort to gain an advantage not given to all students is dishonest whether or not the effort is successful. The academic community regards academic dishonesty as an extremely serious matter, with serious consequences that range from probation to expulsion. 
預期每週課後學習時數
 
Office Hours
另約時間 備註: Appointments by e-mail only (助教:機械所固力組博二 - 柯秉良,E-mail: d09522011@ntu.edu.tw) 
指定閱讀
Please see our lecture notes. 
參考書目
1. J. N. Reddy, An Introduction to the Finite Element Method, 2nd ed., McGraw-Hill, 1993.
2. T. J. R. Hughes, The Finite Element Method, Prentice Hall, 1987.
3. K. J. Bathe, Finite Element Procedures, Prentice Hall, 1995.
4. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 6th ed., Butterworth-Heinemann, 2005. 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
指定作業 
70% 
全學期七次指定作業,指定當天兩週後繳交 
2. 
期末報告 
20% 
期末考 (111 / 1 / 6) 當天繳交 
3. 
平時成績 
10% 
以學期平時表現評分,並依全班整體表現而有調整學期成績總分之可能彈性 
 
課程進度
週次
日期
單元主題
第1週
9/23  1. Introduction to the finite element method in solid mechanics 
第2週
9/30  2. The Finite Element (FE) Method for Static Linear Elasticity
2.1 Derivation and implementation of a basic 2D FE code with triangular constant strain elements 
第3週
10/07  2.2 Generalization of finite element procedures for linear elasticity
2.3 Accuracy and convergence 
第4週
10/14  3. Advanced Element Formulations
3.1 Shear locking and incompatible mode elements 
第5週
10/21  3.2 Volumetric locking: Reduced integration and Bbar methods 
第6週
10/28  3.3 Mixed (hybrid) elements 
第7週
11/04  4. The finite element method for dynamic linear elasticity
4.1 Explicit time integration - the Newmark method
4.2 Implicit time integration 
第8週
11/11  4.3 Modal analysis and modal time integration 
第9週
11/18  5. Finite element method for nonlinear problems
5.1 Small strain hypoelastic materials 
第10週
11/25  5.2 Small strain viscoelasticity 
第11週
12/02  5.3 Large strain elasticity 
第12週
12/09  5.4 Large strain viscoelasticity 
第13週
12/16  5.5 Explicity dynamics for nonlinear problems 
第14週
12/23  6. Interface and contact
6.1 Cohesive zones 
第15週
12/30  6.2 Enforcing constraints using penalty methods and Lagrange multipliers
6.3 Contact elements 
第16週
1/06  7. Special topics (Time permitting)