課程資訊

Special Topics on Advanced Engineering Mathematics (Ⅰ)

110-2

ESOE7008

525 M1920

3.0

Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1102ESOE7008_

Tables of Contents:
I. Introduction
II. Evaluation of Integrals
III. Integral transformations -- Fourier Transform, Laplace Transform, Hilbert Transform, and etc.
IV. Green's Function
V. Special Function -- Legendre function....

Office Hours

"Mathematical methods of Physics" by Jon Mathews and R. L. Walker

(僅供參考)

 No. 項目 百分比 說明 1. Final examination 40% 2. Midterm examination 35% 3. Homework 25%

 課程進度
 週次 日期 單元主題 第1週 I. Introduction -- Interchange theorems 第4週 II. Evaluation of Integrals: Residual theorem and Contour integral 第5週 II. Evaluation of integrals: contour integral, tabulated integrals 第6週 II. Evaluation of integrals: asymptotic series, Method of steepest descent and method of stationary phase 第02週 I. Introduction --- Infinte series 第03週 II. Evaluation of Integrals: Elementary methods 第07週 學校放假 第08週 Method of stationary phase III. Integral Transformations: Fourier Transform and Laplace Transform 第09週 III. Integral Transformations: Fourier Transform and Laplace Transform 第10週 III. Integral Transformations: Fourier Transform, Laplace Transform and Hilbert transform 第11週 midterm exam 第12週 III. Integral Transformations: Hilbert transform IV. Green's function: Linear operator 第13週 IV. Green's function: Linear operator, eigenvectors and eigenvalues 第14週 IV. Green's function: Sturm-Liouville equation 第15週 IV. Green's function: Poisson equation, Heat equation 第16週 IV. Green's function: heat equation and wave equation 第17週 IV. Green's function: wave equation 第18週 Final exam