課程名稱 |
動力學 Dynamics |
開課學期 |
107-2 |
授課對象 |
工學院 應用力學研究所 |
授課教師 |
陳志鴻 |
課號 |
AM7021 |
課程識別碼 |
543EM4010 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
必修 |
上課時間 |
星期二3,4(10:20~12:10)星期四2(9:10~10:00) |
上課地點 |
應233應233 |
備註 |
本課程以英語授課。 總人數上限:54人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/1072AM7021_Dynamics |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
This is a graduate-level course to introduce students the dynamics of particles and rigid bodies in this course. Topics covered in this course include: Dynamics of Particles, Dynamics of Rigid Continuum, Principles of Mechanics, and Hamiltonian Dynamics. |
課程目標 |
Upon completion, successful students will be able to understand the concepts of Lagrangian and Hamiltonian dynamics and how to apply the methods learnt from class to solve realistic dynamical systems. |
課程要求 |
Differential Equations, Linear Algebra, Statics |
預期每週課後學習時數 |
|
Office Hours |
每週五 10:00~12:00 |
指定閱讀 |
Slides along with any other materials related to the lecture will be posted on the class website. |
參考書目 |
Goldstein, Herbert, Charles P. Poole, and John Safko. Classical Mechanics. Pearson, 2013. |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Homework |
40% |
|
2. |
Midterm Exam |
30% |
|
3. |
Final Exam |
30% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
2/19,2/21 |
Dynamics of Particles -
1.1 Space and Time
1.2 Euclidean Geometry and Vector Space
1.3 Kinematics of Particles |
第2週 |
2/26,2/28 |
Dynamics of Particles -
1.4 Newton’s Law
1.5 Balance Laws of Motion of a Particle
1.6 Simple Pendulum in Plane Motion |
第3週 |
3/05,3/07 |
ynamics of Particles -
1.7 The Law of Universal Gravitation and Planetary Motion
1.8 Motion of a System of Particles
1.9 Many Body Problems |
第4週 |
3/12,3/14 |
Dynamics of Particles -
1.10 Transformation of Cartesian Coordinates
1.11 Motion Relative to a Moving Coordinate System
1.12 Motion Near the Surface of the Earth |
第5週 |
3/19,3/21 |
Dynamics of Rigid Continuum -
2.1 Specifications of Continua
2.2 Laws of Mechanics for a Continuum
2.3 Kinematics and Finite Rotation of a Rigid Body |
第6週 |
3/26,3/28 |
Dynamics of Rigid Continuum -
2.4 Kinetics of a Rigid Body
2.5 Representations of Rotational Motion
2.6 Motion of a Top - Eulerian Approach |
第7週 |
4/02,4/04 |
Dynamics of Rigid Continuum -
2.7 Gyroscopes and Accelerometers
2.8 Sliding, Rolling, and Collision of Rigid Bodies |
第8週 |
4/09,4/11 |
Principles of Mechanics -
3.1 History of Classical Mechanics (from 1600 to 1900)
3.2 Principle of Statics |
第9週 |
4/16,4/18 |
Principles of Mechanics -
3.3 D’Alembert’s Principle
3.4 D’Alembert-Lagrange’s Equation for Holonomic Systems |
第10週 |
4/23,4/25 |
Principles of Mechanics -
3.5 Lagrange’s equations for Holonomic Systems
3.6 Motion of a dumb-bell shaped satellite |
第11週 |
4/30,5/02 |
Principles of Mechanics -
3.7 Cyclic Coordinates and Spinning Top (Lagrangian Approach)
3.8 D’Alembert-Lagrange Equations for Non-holonomic Systems |
第12週 |
5/07,5/09 |
Principles of Mechanics -
3.9 Rolling of Two Wheels Connected by an Axle on an Inclined Plane
3.10 Jourdain’s Variational Equation and Appell-Kane Method |
第13週 |
5/14,5/16 |
Hamiltonian Dynamics -
4.1 Element of Calculus of Variations
4.2 Hamilton’s Principle |
第14週 |
5/21,5/23 |
Hamiltonian Dynamics -
4.3 Legendre Transformation
4.4 Hamiltonian Equations |
第15週 |
5/28,5/30 |
Hamiltonian Dynamics -
4.5 Hamiltonian and Conservation Laws
4.6 Raileigh’s Dissipation Function |
第16週 |
6/04,6/06 |
Hamiltonian Dynamics -
4.7 Canonical Transformation and Hamilton-Jacobi Equation
4.8 The Electromagnetic Force |
第17週 |
6/11,6/13 |
Hamiltonian Dynamics -
4.9 Lagrangian and Hamiltionian for the Dynamics of a Charged Particle Moving in an Electromagnetic Field
4.10 Gauss’ Principle of Least Constraint |
|