課程資訊
課程名稱
動力學
Dynamics 
開課學期
109-2 
授課對象
學程  離岸風力發電學分學程  
授課教師
陳志鴻 
課號
AM7021 
課程識別碼
543EM4010 
班次
 
學分
3.0 
全/半年
半年 
必/選修
必修 
上課時間
星期二3,4(10:20~12:10)星期四2(9:10~10:00) 
上課地點
應233應233 
備註
本課程以英語授課。
總人數上限:54人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1092AM7021 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

This is a graduate-level course to introduce students the dynamics of particles and rigid bodies in this course. Topics covered in this course include: Dynamics of Particles, Dynamics of Rigid Continuum, Principles of Mechanics, and Hamiltonian Dynamics. 

課程目標
Upon completion, successful students will be able to understand the concepts of Lagrangian and Hamiltonian dynamics and how to apply the methods learnt from class to solve realistic dynamical systems. 
課程要求
Differential Equations, Linear Algebra, Statics 
預期每週課後學習時數
 
Office Hours
另約時間 備註: After class and appointment via email. 
指定閱讀
Slides along with any other materials related to the lecture will be posted on the class website. 
參考書目
Goldstein, Herbert, Charles P. Poole, and John Safko. Classical Mechanics. Pearson, 2013. 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Final Exam 
30% 
 
2. 
Midterm Exam 
30% 
 
3. 
Homework 
40% 
 
 
課程進度
週次
日期
單元主題
第1週
  Dynamics of Particles - Kinematics of Particles  
第2週
  Dynamics of Particles, Frenet–Serret Frame  
第3週
  Equilibrium, Stability and Equation of Motion 
第4週
  Kepler's laws. Motion Relative to a Moving Coordinate System 
第5週
  Dynamics of Rigid Continuum -
Specifications of Continua;
Laws of Mechanics for a Continuum;
Kinematics and Finite Rotation of a Rigid Body  
第6週
  Dynamics of Rigid Continuum -
Kinetics of a Rigid Body;
Representations of Rotational Motion;
Motion of a Top - Eulerian Approach  
第7週
  Dynamics of Rigid Continuum -
Gyroscopes and Accelerometers;
Sliding, Rolling, and Collision of Rigid Bodies 
第8週
  Principles of Mechanics -
History of Classical Mechanics (from 1600 to 1900);
Principle of Statics  
第9週
  Principles of Mechanics -
D’Alembert’s Principle;
D’Alembert-Lagrange’s Equation for Holonomic Systems  
第10週
  Midterm 
第11週
  Principles of Mechanics -
Cyclic Coordinates and Spinning Top (Lagrangian Approach);
D’Alembert-Lagrange Equations for Non-holonomic Systems  
第12週
  Principles of Mechanics -
Rolling of Two Wheels Connected by an Axle on an Inclined Plane;
Jourdain’s Variational Equation and Appell-Kane Method  
第13週
  Hamiltonian Dynamics -
Element of Calculus of Variations;
Hamilton’s Principle  
第14週
  Hamiltonian Dynamics -
Legendre Transformation;
Hamiltonian Equations  
第15週
  Hamiltonian Dynamics -
Hamiltonian and Conservation Laws;
Raileigh’s Dissipation Function