Course Information
Course title
量性科學
Quantitative Science 
Semester
107-1 
Designated for
VARIOUS PROGRAM  BIOLOGICAL STATISTICS  
Instructor
陳秀熙 
Curriculum Number
EPM7121 
Curriculum Identity Number
849 M0150 
Class
 
Credits
2.0 
Full/Half
Yr.
Half 
Required/
Elective
Elective 
Time
Monday 10,A(17:30~19:15) 
Room
公衛213 
Remarks
1.生統組碩士在職專班必修課程。 2.其他系所組別學生欲選修者,應經授課老師同意。
The upper limit of the number of students: 45. 
Ceiba Web Server
http://ceiba.ntu.edu.tw/1071EPM7121_ 
Course introduction video
 
Table of Core Capabilities and Curriculum Planning
Table of Core Capabilities and Curriculum Planning
Course Syllabus
Please respect the intellectual property rights of others and do not copy any of the course information without permission
Course Description

本課程由基礎統計假說檢定及估計延伸至回歸模型(主要包含線性、布瓦松、邏吉斯以及寇斯等比風險模型)中相對應之統計方法。課程中亦包含運用基礎與進階統計方法於實證醫學中。本年度課程亦將著重於運用統計結果以及預測模型於健康照護科學中。

The course begins with basic statistical hypothesis testing and estimation and their extensions to the regression models (mainly including linear, Poisson, logistic, and Cox proportional hazards regression model). It also covers the context of applying basic and advanced statistical models to the realm of evidence-based medicine (EBM). This-year course also puts emphasis on how statistical reasoning and prediction model can be applied to health care science. 

Course Objective
本課程主要提供在職專班學生對於生物統計方法學習之基礎,課程中將講述如何運用統計假說檢定與估計於實證資料中。課程內容包含了對於基礎生物統計知識之概觀,並且與研究設計、進階統計課程以及生物統計諮詢進行連結與整合。

Quantitative science course is designed for the first-year on-job Master student studying the realm of biostatistics and lays emphasis on how to aid a student framing scientific hypothesis of interest in the sphere of biomedicine in the light of statistical inference in combination with empirical data. It provides a panorama of basic knowledge linked with other relevant courses such as biostatistics in study design, advanced statistical models, and biostatistics consultation. 
Course Requirement
參與課程並繳交習作

Submit on-site RA guided exercise 
Student Workload (expected study time outside of class per week)
 
Office Hours
 
Designated reading
待補 
References
Annette. J. Dobson, An Introduction to Generalized Linear Models, Chapman
& Hall/ CRC, 2002

Armitage P, Statistical Methods in Medical Research, 1971 New York, John Wiley
& Sons

Probability and Statistics, 4/E, Morris H. DeGroot, Mark J. Schervish,
Carnegie-Mellon University 
Grading
   
Progress
Week
Date
Topic