課程資訊
課程名稱
類神經控制系統
NEURO-CONTROL SYSTEMS 
開課學期
95-2 
授課對象
電機資訊學院  電機工程學研究所  
授課教師
林巍聳 
課號
EE7006 
課程識別碼
921 M1390 
班次
 
學分
全/半年
半年 
必/選修
選修 
上課時間
星期二2,3,4(9:10~12:10) 
上課地點
電二102 
備註
總人數上限:25人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Artificial neural networks and fuzzy logic have been the two main parallel methodological developments relevant to Intelligent Control. Artificial neural networks were original developed to emulate the human brain’s neuronal-synaptic mechanisms that store, learn and retrieve information on a purely experimental basis, whereas fuzzy logic was developed to emulate human reasoning, using linguistic expressions. Neuro-controllers can automatically learn by interacting with their environments with little a priori knowledge so as to cope with ill-defined, complex dynamics, be robust to minor faults and disturbances, and be able to deal with nonlinear relationships over wide operating envelopes.

一.內容
1. Introduction to Neuro-Control Systems
2. Neural Networks and Learning Algorithms
2. The Stone-Weierstrass Theorem and its Application to Neural Networks
3. Identification and Control of Dynamical Systems Using Neural Networks
4. Associative Memory Networks
5. Instantaneous Learning Algorithms
6. The CMAC Algorithm
7. The modeling Capabilities of The Binary CMAC
8. Adaptive B-spline Networks


二.教科書
1. Neurofuzzy Adaptive Modelling and Control: Martin Brown and Chris Harris, Prentice Hall (民全)
2. Neuro-Control Systems: theory and applications, edited by Madan M.Gupta and Dandina H. Rao IEEE Press,1994

三.成績評量方式
期末口頭報告50% + 期末書面報告50%

四.預修課程
控制系統
 

課程目標
 
課程要求
 
預期每週課後學習時數
 
Office Hours
 
參考書目
 
指定閱讀
 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
無資料