課程資訊
課程名稱
近代頻譜分析
Modern Spectral Analysis 
開課學期
110-2 
授課對象
電機資訊學院  電機工程學研究所  
授課教師
劉俊麟 
課號
EE5147 
課程識別碼
921 U9640 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期四2,3,4(9:10~12:10) 
上課地點
明達203 
備註
總人數上限:24人 
 
課程簡介影片
 
核心能力關聯
本課程尚未建立核心能力關連
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

信號處理的重心在於從不同的角度分析訊號。一個常用且重要的方法是分析訊號的頻率成份,或是訊號的頻譜。這個角度在通訊、雷達、陣列信號處理、聲學、影像處理都有其應用。

此課程包含一些分析訊號頻譜的進階方法,主要包含兩個部份。第一部份著重「 recovering the power spectral density of wide-sense stationary random processes」,這部份的頻譜估計方法可分成nonparametric與parametric兩類。第二部份著重近年來的頻譜分析技巧,主題包含sub-Nyquist sampling、compressed sensing、與sparse recovery algorithms。

Part 1: Spectral analysis for WSS random processes
- Signal representation: Random processes
- Nonparametric methods: Periodogram and its extensions
- Parametric methods for line spectra: MUSIC, ESPRIT, etc.
- Performance analysis: Estimation theory, MSE, CRB, etc.
- Applications in array signal processing

Part 2: Spectral analysis with sub-Nyquist sampling and compressed sensing
- Sparse sampling: random sampling, etc.
- Recoverability of sparse vectors: Kruskal's rank, spark, etc.
- Sparse recovery algorithms: \ell_0, matching pursuit, orthogonal matching pursuit, basis pursuit, LASSO, and their extensions
- Performance analysis
- Applications 

課程目標
使用近代方法分析訊號之頻譜資訊 
課程要求
此課程為信號處理進階課程,建議修過以下課程(或者有以下關鍵字的背景知識):

線性代數(Linear Algebra ):Orthogonality, eigen-decomposition, Hermitian matrices, norm, dual norm, and matrix norms.
可適性信號處理(Adaptive Signal Processing):Stochastic models (AR, MA, ARMA), Wiener filters, linear prediction, and adaptive beamforming.
凸函數最佳化(Convex Optimization):Convex functions, convex problems, dual problems, and semidefinite programming.

以下課程為選擇性:
偵測與評估(Detection and Estimation Theory):Parameter estimation, (un)biasness, mean-square-error (MSE), and maximum likelihood estimation (MLE). 
預期每週課後學習時數
 
Office Hours
 
參考書目
[1] P. Stoica and R. Moses, Spectral Analysis of Signals, Upper Saddle River, N.J. : Pearson/Prentice Hall, 2005.
[2] D. G. Manolakis, V. K. Ingle, and S. M. Kogon, Statistical and Adaptive Signal Processing Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing, Artech House, 2005.
[3] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing, New York, NY : Springer, 2013.
[4] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts and Techniques. Addison Wesley Pub. Co. Inc., pp. 1, 1993.
[5] H. L. Van Trees, Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory. Hoboken, NJ, USA: Wiley, 2002.
 
指定閱讀
 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
無資料