課程資訊
課程名稱
腦理論
Brain Theory 
開課學期
106-2 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
劉長遠 
課號
CSIE7434 
課程識別碼
922 U0100 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期三7,8,9(14:20~17:20) 
上課地點
資310 
備註
曾修類神經網路。
限學士班四年級以上 或 限碩士班以上
總人數上限:32人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1062CSIE7434_ 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

The syllabus spans the history of brain theory since its inception. Brain theory is the endeavor to understand mind (thinking, intellect) in terms of its design (how it is built, how it works). Subjects include: neurobiological modeling (Hebbian synapse and Hebbian learning; NMDA/LTE), perception, multilayer perceptron, neural networks, reinforcement leraning, self-organizing map and various associative memories. 

課程目標
Brain theory is the endeavor to understand mind (thinking, intellect, 語言 視覺等) in terms of its design (how it is built, how it works). Subjects include: neurobiological modeling, pception and associative memory, computational mental process (as those by Longuet-Higgins, H.C.).
 
課程要求
project, 作業, 測驗 上課 
預期每週課後學習時數
 
Office Hours
另約時間 備註: 預約 
指定閱讀
http://red.csie.ntu.edu.tw/NN/index.php
+
http://red.csie.ntu.edu.tw/BT/index_eng.php 
參考書目
部分參考書目如下其餘甚多資料會email給修課同學:
[1] Unsupervised Learning, H.B. Barlow, Neural Computation 1, 295-311 (1989)
[2] Finding Minimum Entropy Codes, H.B. Barlow, T.P. Kaushal, G.J. Mitchison, Neural Computation 1, 412-423(1989)
[3] Nonlinear Dimensionality reduction by locally linear embedding, Sam T. Roweis and Lawrence K. Saul, Science, vol. 290. 22 December 2000, 2323-2326
[4] The manifold ways of perception, H. Sebastian Seung and Daniel D. Lee,
Science, vol 290, 22 December, 2268-2269
[5] Minimization of Boolean complexity in human concept learning
Jacob Feldman, Nature, vol 407, 5 October 2000, 630-632
[6] Reinforcement learning: An introduction, by R.S. Sutton and A.G. Barto, 1998, MIT Press.

 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
第2週
3/07  Hopfield model : introduction 
第3週
3/14  reinforcement learning : introduction 
第4週
3/21  NetTalk: introduction
https://pdfs.semanticscholar.org/b705/2570d4a8016f94eb788d921aa94b7724fecb.pdf
http://archive.ics.uci.edu/ml/index.php
 
第5週
3/28  self-organizing map
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=28
http://concepts.psych.wisc.edu/papers/711/Kohonen90ProcIEEE.SOM.pdf
 
第6週
4/04  no class 
第7週
4/11  Boltzmann machine
https://pdfs.semanticscholar.org/a0d1/6f0e99f7ce5e6fb70b1a68c685e9ad610657.pdf 
第8週
4/18  Elman network
https://crl.ucsd.edu/~elman/Papers/fsit.pdf
https://pdfs.semanticscholar.org/59e4/0d166a46e14b37bc90041864eca26af6ae00.pdf
 
第9週
4/25  Elman network
https://pdfs.semanticscholar.org/59e4/0d166a46e14b37bc90041864eca26af6ae00.pdf

Segmentation of DNA Using Simple Recurrent Neural Network
https://www.sciencedirect.com/science/article/pii/S0950705111002024?via%3Dihub 
第10週
5/02  reinforcement learning
https://www.csie.ntu.edu.tw/~cyliou/red/NN/Demo/demo.html 
第11週
5/09  Chapter 1: Complexity of perceptron
Chapter 2: Training complexity of single perceptron
Chapter 3: Perfect classification of layered perceptrons
Chapters 1, 2, and 3 in
https://www.csie.ntu.edu.tw/~cyliou/red/NN/Classinfo/classinfo.html 
第12週
5/16  Chapter 4: Principle of multi-layer perceptron
https://www.csie.ntu.edu.tw/~cyliou/red/NN/Classinfo/classinfo.html 
第13週
5/23  Chapter 5
https://www.csie.ntu.edu.tw/~cyliou/red/NN/Classinfo/classinfo.html 
第14週
5/30  Hinton's deep learning 
第15週
6/06  Refined Hopfield model.
Chapter 6
https://www.csie.ntu.edu.tw/~cyliou/red/NN/Classinfo/classinfo.html 
第16週
6/13  Refined SOM. 
第17週
6/20  測驗考試 
第18週
6/27  複習 (自由參加 非上課)