課程資訊
課程名稱
腦理論
Brain Theory 
開課學期
100-2 
授課對象
學程  神經生物與認知科學學程  
授課教師
劉長遠 
課號
CSIE7434 
課程識別碼
922 U0100 
班次
 
學分
全/半年
半年 
必/選修
選修 
上課時間
星期一6,7,8(13:20~16:20) 
上課地點
 
備註
碩、博曾修類神經網路
限學士班四年級以上
總人數上限:20人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

The syllabus spans the history of the brain theory since its inception. Brain theory is the endeavor to understand mind (thinking, intellect) in terms of its design (how it is built, how it works). Subjects include: neurobiological modeling (Hebbian synapse and Hebbian learning; NMDA/LTE)
, pception and associative memory, computational mental process (Longuet-Higgins, H.C.).
For detailed and current(2011/12/22) information, please refer the following website:
http://red.csie.ntu.edu.tw/BT/index_eng.php 

課程目標
The syllabus spans the history of the brain theory since its inception. Brain theory is the endeavor to understand mind (thinking, intellect) in terms of its design (how it is built, how it works). Subjects include: neurobiological modeling (Hebbian synapse and Hebbian learning; NMDA/LTE)
, pception and associative memory, computational mental process (Longuet-Higgins, H.C.).
 
課程要求
 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
部分參考書目如下:
[1] Unsupervised Learning, H.B. Barlow, Neural Computation 1, 295-311 (1989)
[2] Finding Minimum Entropy Codes, H.B. Barlow, T.P. Kaushal, G.J. Mitchison, Neural Computation 1, 412-423(1989)
[3] A global geometric framework for nonlinear dimensionality reduction Joshua B. Tenenbaum, Vin de Silva, John C. Langford, Science, vol. 290, 22 December 2000, 2319-2323
[4] Nonlinear Dimensionality reduction by locally linear embedding, Sam T. Roweis and Lawrence K. Saul, Science, vol. 290. 22 December 2000, 2323-2326
[5] The manifold ways of perception, H. Sebastian Seung and Daniel D. Lee,
Science, vol 290, 22 December, 2268-2269
[6] Minimization of Boolean complexity in human concept learning
Jacob Feldman, Nature, vol 407, 5 October 2000, 630-632
[7] Mind design II, edited by John Haugeland, 1997
[8] Concepts for Neural Networks. A Survey edited by L.J. Landau and J.G. Taylor.
[9, 主要教科書] Reinforcement learning: An introduction, by R.S. Sutton and A.G. Barto, 1998, MIT Press.
[10] Neurocomputing: Foundations of Research, edited by James A. Anderson and Edward Rosenfeld, The MIT Press, 1988
[11, 參考教科書] Neural networks, a comprehensive foundation, second edition, by Simon Haykin, Prentice-Hall, Inc., 1999
 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題