課程資訊
課程名稱
自然語言處理
Natural Language Processing 
開課學期
105-2 
授課對象
學程  知識管理學程  
授課教師
陳信希 
課號
CSIE5042 
課程識別碼
922 U0670 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期四2,3,4(9:10~12:10) 
上課地點
資105 
備註
KM學程系統領域選修課。
限學士班三年級以上
總人數上限:55人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1052CSIE5042_nlp 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

自然語言處理,又稱計算語言學或人類語言技術,主要的目標是學習了解和產生自然語言的電腦系統,讓電腦像人一樣處理任何形式的對話工作。由於大量知識的機器可讀形式是以自然語言來呈現,很多實際應用應運而生。以文件分析、自動問答、和機器翻譯等三個應用為例。在文件分析,自然語言處理技術由部落格、微博、論壇等不同形式的媒體中,擷取知識以支援多樣化的應用。在自動問答,自然語言處理技術分析問題以了解問題核心,分析內容以擷取正確答案。在機器翻譯,自然語言處理技術分析來源語言,掌握語言之差異,以生成目標語言。本課程分詞彙、語法、語義、語用、和應用等五個面向,教授自然語言處相關理論和技術。 

課程目標
修課同學可以由詞彙、語法、語義、語用、和應用等五個面向,學習自然語言處相關理論和技術,以下分別說明:
(1) 詞彙:Collocations、N-grams、Smoothing、HMM Models、Part of Speech Tagging
(2) 語法:Syntax and Grammars、Syntactic Parsing、Statistical Parsing、Dependency Parsing
(3) 語義:The Representation of Meanings、Computational Semantics、Lexical Semantics、Computational Lexical Semantics
(4) 語用:Computational Discourse
(5) 應用:Information Extraction 
課程要求
本課程評量包括期中考、期末考、和學期計畫三部分,引導同學學習自然語言處理理論和技術,並設計應用系統。  
預期每週課後學習時數
 
Office Hours
每週四 15:30~17:00 備註: 可另約時間 
指定閱讀
上課講義和參考資料。 
參考書目
待(1) Daniel Jurafsky and James H. Martin, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition, Second Edition. Prentice Hall, 2008.
(2) Christopher D. Manning and Hinrich Schutze,
Foundations of Statistical Natural Language Processing, MIT Press, 1999.
(3) Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit, O'Reilly Media, 2009.
(4) Deep Learning Papers for Natural Language Processing 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
第1週
2/23  Introduction 
第2週
3/2  Categories and Uses of Linguistic Knowledge 
第3週
3/9  Collocations and Multiword Expressions 
第4週
3/16  N-gram Models and Smoothing 
第5週
3/23  Neural Probabilistic Language Models and Word Embeddings 
第6週
3/30  Hidden Markov Models 
第7週
4/6  老師出席www 2017 國際會議,11:20助教說明Project 1
[[ Project 1 RELEASE ]] 
第8週
4/13  Part-of-Speech Tagging 
第9週
4/20  期中考 
第10週
4/27  Syntax and Grammars, Top-Down Parsing, Bottom-Up, CKY Parsing  
第11週
5/4  Syntactic Parsing
[[ Project 1 DUE ]] 
第12週
5/11  Statistical Parsing 
第13週
5/18  Parsing with Neural Networks, Chinese Discourse Parsing and Its Applications
[[ Project 2 RELEASE ]] 
第14週
5/25  Dependency Parsing 
第15週
6/1  Lexical Semantics 
第16週
6/8  Semantic Role Labelling and Computational Semantics 
第17週
6/15  Computational Discourse
[[ Project 2 DUE ]] 
第18週
6/22  期末考