課程概述 |
這門課的目的在於學習演算法設計的六個基本策略,如下所示。
• Greedy Method
• Dynamic Programming (DP)
• Prune-and-Search (P&S)
• Branch-and-Bound (B&B)
• Divide-and-Conquer (D&C)
• Plane Sweep
這六個基本策略有如演算法領域的微積分與線性代數,歷久而彌新。
這門課有二次程式考試。期中考要求修課同學設計一個能解決
the longest common subsequence problem 的 DP 程式與能解決
two-dimensional linear programming problem 的 P&S 程式。
期末考要求修課同學設計一個能解決 the 0/1 knapsack problem
的 B&B 程式與能解決 two-dimensional closest pair problem 的
D&C 程式。以上四個 problems 與其相對應的演算法在課堂上將
會詳細介紹。
修課同學在這門課必須閱讀以下四篇論文 (DP、P&S、B&B、D&C
各一篇),並繳交書面閱讀報告。所有論文皆有電子檔可供下載。
• (DP) Wagner, "The string-to-string correction problem," Journal of
the ACM, vol. 21, no. 1, 1974, pp. 168-173.
• (P&S) Megiddo, "Linear-time algorithms for linear programming in
R3 and related problems," SIAM Journal on Computing, vol. 12, no. 4,
1983, pp. 759-776 (only Section 3 is required).
• (B&B) A personal assignment problem solved by the branch-and-
bound strategy (in Section 5-6 of Lee, Tseng, Chang and Tsai's book:
Introduction to the Design and Analysis of Algorithms).
• (D&C) Imai, Iri, and Murota, "Voronoi diagram in the Laguerre
geometry and its applications," SIAM Journal on Computing, vol. 14,
no. 1, 1985, pp. 93-105.
每篇閱讀報告必須包含 (但不限) 以下內容,並儘量用例子與圖表輔助說明。
• 問題定義
• 解法敘述 (勿列出詳細程式碼)
• 讀後心得
閱讀報告請以中文書寫 (可夾雜英文專有名詞),勿剪貼原始論文內容
拼湊而成,應忠實地將自己所理解的部份寫出。例子與圖表可援用原
始論文或自創,敘述方式可自創,不須遵循原始論文。老師將會親自
批閱同學的閱讀報告並給予建議,評分依據如下。
• 態度 (是否用心書寫?)
• 能力 (是否看懂論文且掌握重點?是否敘述清楚且精簡扼要?
是否使用合適的例子與圖表輔助說明?)
此外,所有修課同學將分成八組分別研讀並在最後四週依序報告以下八篇
論文(DP 三篇、P&S 一篇、B&B 與 D&C 各二篇)。所有論文皆有電子檔
供下載。針對同學的報告,老師將會給予適當建議(若有需要),相信對同學
日後職場生涯有所助益。
• (DP) Knuth, "Optimal binary search trees," Acta Informatica, vol.1,
1971, pp.14-25.
• (DP) Hsu and Du, "New algorithms for the LCS problem," Journal
of Computer and System Sciences, vol.29, 1984, pp.133-152.
• (DP) Wang, Chen, and Park, "On the set LCS and set-set LCS
problems," Journal of Algorithms, vol.14, no.3, 1993, pp.466-477.
(ignore Section 3: The Set LCS Problem)
• (P&S) Bhattacharya, Jadhav, Mukhopadhyay, and Robert, "Optimal
algorithms for some intersection radius problems," Computing, vol.52,
no.3, 1994, pp.269-279. (ignore Section 2: Intersection Radius Problem
for Hyperplanes)
• (B&B) Wang and Lee, "An Efficient Channel Routing Algorithm to Yield
an Optimal Solution," IEEE Transactions on computers, vol.39, no.7,
1990, pp.957-962.
• (B&B) Section 5-9 of Lee, Tseng, Chang and Tsai's book: Introduction
to the Design and Analysis of Algorithms.
• (D&C) Güting, "Optimal divide-and-conquer to compute measure and
contour for a set of iso-rectangles," Acta Informatica, vol.21, 1984, pp.
271-291.
• (D&C) Lee, "An optimal time and minimal space algorithm for rectangle
intersection problems," International Journal of Computer and Information
Sciences, vol.15, no.1, 1984, pp.23-32.
|