課程資訊
課程名稱
人工智慧
Artificial Intelligence 
開課學期
109-2 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
許永真 
課號
CSIE5400 
課程識別碼
922EU3020 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一7,8,9(14:20~17:20) 
上課地點
資102 
備註
本課程以英語授課。
總人數上限:90人 
課程網頁
https://course.agent.csie.ntu.edu.tw/ 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Introduction to Artificial Intelligence (CSIE 5400)
Instructor: Prof. Jane Yung-jen Hsu (許永真教授)
TA1: Erick Chandra
TA2: 陳柏均 (Bert Chen)
Office: R318 (Prof. Jane), R344 (laboratory)
Email to Professor: yjhsu@csie.ntu.edu.tw
Email to TAs: aita2019s@agent.csie.ntu.edu.tw
Website: https://iagentntu.github.io/
Classroom: CSIE R102
Class schedule: Thursdays, 14:20-17:20
Course website: https://course.agent.csie.ntu.edu.tw/ 

課程目標
This course will provide a broad understanding of basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems. The students will learn the theory, algorithms, and their applications.

Course coverage:
PART I | Introduction + Problem Solving and Search
- Chapter 1: Introduction to AI, history of AI
- Chapter 2: Intelligent agents
- Chapter 3: Uninformed search, heuristic search, A* algorithm
- Chapter 4: Beyond classical search
- Chapter 5: Adversarial search, games
- Chapter 6: Constraint Satisfaction Problems

PART II | Data-Driven AI
- Machine Learning: Basic concepts
- Chapter 18: Learning from examples
- Linear models: linear regression, perceptron, K-nearest neighbors
- Decision trees
- Statistical machine learning: Support Vector Machines
- Neural networks

PART III | Decision Making
- Chapter 7: Logical agents
- Chapter 13: Quantifying uncertainty
- Chapter 14: Bayesian networks
- Markov Decision Process
- Chapter 21: Reinforcement Learning

PART IV | Advanced Topics
- Natural Language Processing
- Computer Vision
- Robotics 
課程要求
Algorithms, Python 2.7 programming language 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.
Pearson Education/Prentice Hall, 2010. ISBN-13:978-0-13-
604259-4 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
2/22  Course Overview
Chapter 1: Introduction 
Week 2
3/1  No lecture due to 228 Memorial
[DUE] Assignment #0 
Week 3
3/8  Chapter 2: Intelligent Agents
Chapter 3: Solving Problems by Searching 
Week 4
3/15  Chapter 4: Search in Complex Environments
Chapter 6: Constraint Satisfaction Problems 
Week 5
3/22  Chapter 5: Adversarial Search and Games
MCTS and AlphaGO 
Week 6
3/29  Chapter 12: Quantifying Uncertainty
Chapter 13: Probabilistic Reasoning: Bayes Nets 
Week 7
4/5  [NTU] Spring Break 
Week 8
4/12  Chapter 14: Probabilistic Reasoning over Time 
Week 9
4/19  Midterm 
Week 10
4/26  Chapter 15: Probabilistic Programming
Chapter 16 Making Simple Decisions 
Week 11
5/3  Chapter 19: Learning from Examples 
Week 12
5/10  Chapter 20: Learning Probabilistic Models 
Week 13
5/17  Chapter 21: Deep Learning 
Week 14
5/24  Chapter 22: Reinforcement Learning 
Week 15
5/31  Chapter 23: Natural Language Processing
Chapter 24: Deep Learning for Natural Language Processing 
Week 16
6/7  Chapter 27: Philosophy, Ethics, and Safety of AI
Chapter 28: The Future of AI 
Week 17
6/14  No lecture due to Dragon Boat Festival 
Week 18
6/21  Final Exam