課程名稱 |
人工智慧 Artificial Intelligence |
開課學期 |
107-2 |
授課對象 |
電機資訊學院 資訊工程學研究所 |
授課教師 |
許永真 |
課號 |
CSIE5400 |
課程識別碼 |
922 U3020 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期四7,8,9(14:20~17:20) |
上課地點 |
資102 |
備註 |
總人數上限:90人 |
課程網頁 |
https://course.agent.csie.ntu.edu.tw/ |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
Introduction to Artificial Intelligence (CSIE 5400)
Instructor: Prof. Jane Yung-jen Hsu (許永真教授)
TA1: Erick Chandra
TA2: 陳柏均 (Bert Chen)
Office: R318 (Prof. Jane), R344 (laboratory)
Email to Professor: yjhsu@csie.ntu.edu.tw
Email to TAs: aita2019s@agent.csie.ntu.edu.tw
Website: https://iagentntu.github.io/
Classroom: CSIE R102
Class schedule: Thursdays, 14:20-17:20
Course website: https://course.agent.csie.ntu.edu.tw/ |
課程目標 |
This course will provide a broad understanding of basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems. The students will learn the theory, algorithms, and their applications.
Course coverage:
PART I | Introduction + Problem Solving and Search
- Chapter 1: Introduction to AI, history of AI
- Chapter 2: Intelligent agents
- Chapter 3: Uninformed search, heuristic search, A* algorithm
- Chapter 4: Beyond classical search
- Chapter 5: Adversarial search, games
- Chapter 6: Constraint Satisfaction Problems
PART II | Data-Driven AI
- Machine Learning: Basic concepts
- Chapter 18: Learning from examples
- Linear models: linear regression, perceptron, K-nearest neighbors
- Decision trees
- Statistical machine learning: Support Vector Machines
- Neural networks
PART III | Decision Making
- Chapter 7: Logical agents
- Chapter 13: Quantifying uncertainty
- Chapter 14: Bayesian networks
- Markov Decision Process
- Chapter 21: Reinforcement Learning
PART IV | Advanced Topics
- Natural Language Processing
- Computer Vision
- Robotics |
課程要求 |
Algorithms, Python 2.7 programming language |
預期每週課後學習時數 |
|
Office Hours |
另約時間 備註: TA hours: FRI 17:00-18:00 | TUE 16:30-17:30 |
指定閱讀 |
Textbook:
Artificial Intelligence: A Modern Approach, 3rd ed. by Stuart Russell and Peter Norvig, published by Pearson Education/Prentice Hall, 2010. ISBN-13:978-0-13-604259-4 |
參考書目 |
Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.
Pearson Education/Prentice Hall, 2010. ISBN-13:978-0-13-
604259-4 |
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Midterm |
40% |
[THE PERCENTAGE MAY BE ADJUSTED]
A written exam in the mid semester to assess student's understanding about Artificial Intelligence and course materials. |
2. |
Homeworks |
30% |
[THE PERCENTAGE MAY BE ADJUSTED]
All programming assignments or written take-home assignments. |
3. |
Term Project |
30% |
A one-month team project using AI algorithms (Including poster expo and project report). |
|
週次 |
日期 |
單元主題 |
第1週 |
02/20 |
Course Overview + Design Thinking |
|