課程資訊
課程名稱
人工智慧
Artificial Intelligence 
開課學期
110-2 
授課對象
電機資訊學院  資訊網路與多媒體研究所  
授課教師
許永真 
課號
CSIE5400 
課程識別碼
922EU3020 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一7,8,9(14:20~17:20) 
上課地點
資102 
備註
本課程以英語授課。人工智慧碩士必修。
總人數上限:100人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Introduction to Artificial Intelligence (CSIE 5400)
Instructor: Prof. Jane Yung-jen Hsu (許永真教授)
Office: R318 (Prof. Jane), R344 (laboratory)
Email to Professor: yjhsu@csie.ntu.edu.tw
Email to TAs: aita2022s@agent.csie.ntu.edu.tw
Website: https://iagentntu.github.io/
Classroom: CSIE R102
Class schedule: Mondays, 14:20-17:20
Online materials at NTU COOL https://cool.ntu.edu.tw/courses/11786 

課程目標
This course will provide a broad understanding of basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems. The students will learn the theory, algorithms, and their applications.

Course coverage:
PART I | Introduction + Problem Solving and Search
- Chapter 1: Introduction to AI, history of AI
- Chapter 2: Intelligent agents
- Chapter 3: Uninformed search, heuristic search, A* algorithm
- Chapter 4: Beyond classical search
- Chapter 5: Adversarial search, games
- Chapter 6: Constraint Satisfaction Problems

PART II | Data-Driven AI
- Machine Learning: Basic concepts
- Chapter 18: Learning from examples
- Linear models: linear regression, perceptron, K-nearest neighbors
- Decision trees
- Statistical machine learning: Support Vector Machines
- Neural networks

PART III | Decision Making
- Chapter 7: Logical agents
- Chapter 13: Quantifying uncertainty
- Chapter 14: Bayesian networks
- Markov Decision Process
- Chapter 21: Reinforcement Learning

PART IV | Advanced Topics
- Natural Language Processing
- Computer Vision
- Robotics 
課程要求
Algorithms, Python 2.7 programming language 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
待補 
參考書目
Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach, 3rd ed.
Pearson Education/Prentice Hall, 2010. ISBN-13:978-0-13-
604259-4 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題