課程名稱 |
圖形分析辨認 PATTERN ANALYSIS AND CLASSIFICATION |
開課學期 |
97-2 |
授課對象 |
電機資訊學院 資訊工程學研究所 |
授課教師 |
洪一平 |
課號 |
CSIE5079 |
課程識別碼 |
922 U3030 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期一6,7,8(13:20~16:20) |
上課地點 |
資101 |
備註 |
總人數上限:80人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/972PR |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
The outline of this course is given below.
I. Pattern Recognition Overview
II. Bayesian Decision Theory
III. Supervised Learning Using Parametric Approaches
IV. Supervised Learning Using Non-parametric Approaches
V. Linear Discriminant Functions
VI. Unsupervised Learning and Clustering
VII. Special Topics in PR
|
課程目標 |
The goal of this course is to introduce the basic concepts and techniques used
in the field of pattern recognition (PR). Broadly speaking, PR is a science
that concerns the classification (or recognition) of measurements. It has many
important applications, for example, image analysis, video surveillance,
face recognition, fingerprint identification, speech recognition,
medical diagnosis, data mining, and information retrieval. |
課程要求 |
|
預期每週課後學習時數 |
|
Office Hours |
每週二 14:00~16:00 備註: 助教office hours |
指定閱讀 |
|
參考書目 |
|
評量方式 (僅供參考) |
No. |
項目 |
百分比 |
說明 |
1. |
Homeworks |
30% |
|
2. |
Two Exams |
40% |
|
3. |
Term Project |
30% |
|
|
週次 |
日期 |
單元主題 |
第1週 |
2/16 |
Introduction |
第2週 |
2/23 |
Chapter 1. Overview |
第3週 |
3/02 |
Chapter 2 Baysian Decision Theory |
第4週 |
3/09 |
Chapter 2 Baysian Decision Theory |
第5週 |
3/16 |
Chapter 2 Baysian Decision Theory |
第6週 |
03/23 |
Chapter 3 Supervised Learning Using Parametric Approaches |
第7週 |
03/30 |
1st Exam |
第8週 |
04/06 |
Chapter 3 Supervised Learning Using Parametric Approaches |
第9週 |
04/13 |
Chapter 3 Supervised Learning Using Parametric Approaches (PCA/LDA) |
第10週 |
04/20 |
Chapter 4 Supervised Learning Using NonParametric Approaches |
第11週 |
04/27 |
Chapter 4 Supervised Learning Using NonParametric Approaches |
第12週 |
05/04 |
Chapter 10: Unsupervised Learning and Clustering |
第13週 |
05/11 |
2nd Exam |
第14週 |
05/18 |
Topic 1. Background Modeling and foreground detection. /////
Topic 2. Local Discriminant Embedding/LBP |
第15週 |
05/25 |
Topic 1. Facial Trait Code. //////
Topic 2. Mean-Shift Tracking. |
第16週 |
06/01 |
Topic 1. Adaboost /////
Topic 2. Hidden Markov Model |
第17週 |
06/08 |
Chapter 5 Linear Discriminant Functions |
|