課程資訊
課程名稱
機器人知覺與學習
ROBOT PERCEPTION AND LEARNING 
開課學期
98-1 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
王傑智 
課號
CSIE5117 
課程識別碼
922EU3430 
班次
 
學分
全/半年
半年 
必/選修
選修 
上課時間
星期三6,7,8(13:20~16:20) 
上課地點
資110 
備註
本課程以英語授課。
限學士班四年級以上
總人數上限:30人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/981pal 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Robotics has achieved its great success to date in the world of industrial manufacturing. Robot arms, or manipulators, comprise a 2 billion dollar industry. However, these commercial robots/manipulators suffer from a fundamental disadvantage: lack of mobility. This course will cover both science and systems that allows a mobile robot to move through a real-world environment to perform its tasks, including action, perception, planning and learning.  

課程目標
The topics that will be discussed include:

The Action-Perception-Cognition Loop,
Locomotion,
Mobile Robot Kinematics,
Dynamics and Control,
Uncertainty,
Sensors and Sensing,
Localization (EKF, Markov),
Mapping (Feature-based, Grid-based approaches),
Object & Activity Recognition,
Path Planning,
Cooperative Mobile Robotics,and
Learning.  
課程要求
1. Familiarity with software development in Matlab, C or C++ will be essential/helpful for this course.

2. But the most important prerequisite will be creativity and enthusiasm, and a desire to explore.

3. The course load is “heavy”. Think twice if you want to take this course.
 
預期每週課後學習時數
 
Office Hours
另約時間 
指定閱讀
Introduction to Autonomous Mobile Robots by Roland Siegwart and Illah R.
Nourbakhsh, the MIT press, April 2004, ISBN: 0-262-19502
 
參考書目
Springer Handbook of Robotics by Siciliano, Bruno; Khatib, Oussama (Eds.),
the Springer press, June 2008, ISBN: 978-3-540-23957-4. Online version available.

The Robotics Primer by Maja J. Mataric , the MIT press, September 2007, ISBN:
0-262-63354-X
 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
Week 1
  Introduction 
Week 2
  Sensors for Perception 
Week 3
  Range Sensors and Processing 
Week 4
  Scan Matching and Registration (ICCV 2005 short course: 3D Scan Matching and Registration, http://www.cs.princeton.edu/~bjbrown/iccv05_course/) 
Week 5
  Cameras  
Week 6
  Midterm Exam I 
Week 7
  Uncertainty  
Week 8
  Localization 
Week 9
  Mapping 
Week 10
  Tracking 
Week 11
  Object Recognition 
Week 12
  Midterm Exam II 
Week 13
  No Class 
Week 14
  Face Detection and Alignment, Hand Posture Recognition 
Week 15
  Kinematics of Manipulation and Locomotion, Control and Architecture 
Week 16
  To be announced 
Week 17
  Planning and Obstacle Avoidance 
Week 18
  Final Competition 
Week 19
  Final Competition