課程名稱 |
機器人知覺與學習 ROBOT PERCEPTION AND LEARNING |
開課學期 |
99-1 |
授課對象 |
電機資訊學院 資訊工程學研究所 |
授課教師 |
王傑智 |
課號 |
CSIE5117 |
課程識別碼 |
922EU3430 |
班次 |
|
學分 |
3 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期四2,3,4(9:10~12:10) |
上課地點 |
資105 |
備註 |
本課程以英語授課。本課程以英語授課。 限學士班三年級以上 總人數上限:30人 |
Ceiba 課程網頁 |
http://ceiba.ntu.edu.tw/991pal |
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
PRELIMINARIES
FUNDAMENTALS OF REAL VARIABLES
MATHEMATICAL PRELIMINARIES
FUNDAMENTALS OF UNCERTAINTY ANALYSIS
FUNDAMENTALS OF RANDOM PROCESSES
MARTINGALES, STOPPING TIMES AND FILTRATIONS
STOCHASTIC PROCESSES AND SIGMA FIELDS
STOPPING TIMES
CONTINUOUS TIME MARTINGALES
REYNOLDS TRANSPORT THEOREM
CONSERVATION OF DISSOLVED CONSTITUENT MASS
BROWNIAN MOTION
BROWNIAN MOTION
MARKOV PROPERTY
THE BROWNIAN SAMPLE PATHS
STOCHASTIC INTEGRATION
CONSTRUCTION OF THE STOCHASTIC INTEGRAL
THE CHANGE-OF-VARIABLE FORMULA
GENERALIZED ITO RULE FOR BROWNIAN MOTION
STOCHASTIC DIFFERENTIAL EQUATIONS (IF TIME PERMITTED)
STRONG SOLUTIONS
WEAK SOLUTIONS
APPROXIMATION METHODS FOR UNCERTAINTY ANALYSIS
FIRS-ORDER VARIANCE ESTIMATION METHOD
ROSENBLUETH;S PROBABILISTIC POINT ESTIMATE METHOD
HARR’S PROBABILISTIC POINT ESTIMATE METHOD
LI’S PROBABILISTIC POINT ESTIMATE METHOD |
課程目標 |
THE OVERALL OBJECTIVE OF THIS COURSE IS TO FAMILIARIZE STUDENTS WITH BASIC CONCEPTS OF MATHEMATICAL MODELING UNDER UNCERTAINTY. STUDENTS ARE EXPECTED TO GAIN A BASIC UNDERSTANDING OF STOCHASTIC PROCESSES, UNCERTAINTY ANALYSIS AND FUNDAMENTAL STOCHASTIC CALCULUS USEFUL FOR STOCHASTIC MODELING. THIS COURSE WILL PROVIDE STUDENTS WITH FUNDAMENTAL KNOWLEDGE AND QUANTITATIVE APPROACHES NECESSARY FOR MODELING NATURAL PROCESSES UNDER UNCERTAINTY. THIS COURSE WILL BE TAUGHT IN ENGLISH. |
課程要求 |
先修課程: 統計學或工程統計, 微積分或工程數學(一),或授課教師同意 |
預期每週課後學習時數 |
|
Office Hours |
另約時間 |
指定閱讀 |
|
參考書目 |
|
評量方式 (僅供參考) |
|
週次 |
日期 |
單元主題 |
Week 1 |
9/16 |
Introduction |
Week 2 |
9/23 |
Hot Topics and Challenges |
Week 3 |
9/30 |
Sensors for Perception |
Week 4 |
10/07 |
Range Sensors and Processing |
Week 5 |
10/14 |
Scan Matching and Registration |
Week 6 |
10/21 |
Midterm Exam I |
Week 7 |
10/28 |
Cameras & Vision |
Week 8 |
11/04 |
Uncertainty |
Week 9 |
11/11 |
Localization |
Week 10 |
11/18 |
Simultaneous Localization and Mapping (SLAM) |
Week 11 |
11/25 |
Tracking |
Week 12 |
12/02 |
Midterm Exam II |
Week 13 |
12/09 |
Planning and Obstacle Avoidance |
Week 14 |
12/16 |
Robot Learning & What To Do With 100 Million GPS Points http://research.microsoft.com/en-us/um/people/jckrumm/Presentations%202010/AutomotiveUI%20keynote.pptx |
Week 15 |
12/23 |
Robot Learning |
Week 16 |
12/30 |
Reinforcement Learning http://rlai.cs.ualberta.ca/RLAI/RLAIcourse/RLAIcourse.html |
Week 17 |
1/06 |
Markov Decision Processes: Tutorial Slides by Andrew Moore http://www.autonlab.org/tutorials/mdp09.pdf |
Week 18 |
1/13 |
Final Exam |