課程資訊
課程名稱
機器學習理論與實務
Machine Learning: Theory and Practice 
開課學期
106-2 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
林守德 
課號
CSIE7433 
課程識別碼
922 U3610 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期二7,8,9(14:20~17:20) 
上課地點
資110 
備註
初選不開放。
總人數上限:20人 
課程網頁
https://www.csie.ntu.edu.tw/~sdlin/Courses/KDD2018.htm 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

While it is possible to learn a variety of classification, clustering and other mining techniques from lectures or books, applying them efficiently and accurately to the real-world data is a completely different story. Very often a painful process of trial and error is needed. While dealing with the practical issues on data is rather an art than science, in this course, we try to gain experiences from tackling some real-world problems proposed as the past or ongoing competitions in machine learning or data mining society. In particular, we aim at attending the ACM KDD CUP, which is currently the most prestigious data mining competition. We expect to run this course in an interactive way, so students must discuss with the lecturers and other classmates about their findings as well as the problems they encountered every week. 

課程目標
This course particularly aims to attend some data mining competitions. 
課程要求
 
預期每週課後學習時數
 
Office Hours
另約時間 
指定閱讀
 
參考書目
 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
no 
100% 
 
 
課程進度
週次
日期
單元主題
無資料