課程資訊
課程名稱
網路資訊檢索與探勘
Web Retrieval and Mining 
開課學期
105-2 
授課對象
學程  知識管理學程  
授課教師
鄭卜壬 
課號
CSIE5137 
課程識別碼
922 U3640 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期五2,3,4(9:10~12:10) 
上課地點
資102 
備註
KM學程系統領域選修課。
限學士班三年級以上 或 限碩士班以上
總人數上限:98人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1052IR 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

The Web has become the largest data repository in the world. This course aims at introducing the basic and advanced techniques of (1) Web information retrieval (IR)? How to search the large-scale Web data and (2) Web mining? How to discover knowledge from the diverse data resources on the Web. 

課程目標
The lecture will cover the topics of (1) Web IR, including the fundamentals of modern IR systems, crawling, ranking algorithms, Web page classification and clustering, Chinese IR, multimedia IR, and case studies of search engines, and (2) Web mining, including Web content/text mining, Web structure mining, Web query log mining, information extraction, and taxonomy generation.

Students in this course are expected to read research papers on a relevant topic to Web IR or Web mining, do a project, and then present their work in class. 
課程要求
Programming experience will be necessary for the assignments and project. 
預期每週課後學習時數
 
Office Hours
每週四 09:00~12:00 
指定閱讀
 
參考書目
Introduction to Information Retrieval (IIR), by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schutze, Cambridge university Press, 2008. (Selected Chapters)
Modern Information Retrieval, by Ricardo Baeza-Yates and Berthier Ribeiro-Neto, Addison-Wesley, 1999. (Selected Chapters)
Search Engines: Information Retrieval in Practice, by W. Bruce Croft, Donald Metzler, and Trevor Strohman, 2009. (Selected Chapters)
Mining the Web: Discovering Knowledge from Hypertext Data, by Soumen Chakrabarti, Morgan Kaufmann, 2002. (Selected Chapters)
Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, by Bing Liu, Springer, 2006. (Selected Chapters)
Selected papers (mainly from SIGIR, WWW, CIKM, JASIST & ACM TOIS) 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Assignments (handwritten + programming) 
50% 
 
2. 
Midterm 
25% 
 
3. 
Term Project 
25% 
 
 
課程進度
週次
日期
單元主題