課程資訊
課程名稱
高等多媒體資訊分析與檢索
Advanced Topics in Multimedia Analysis and Indexing 
開課學期
108-2 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
徐宏民 
課號
CSIE7461 
課程識別碼
922 U3710 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期四7,8,9(14:20~17:20) 
上課地點
 
備註
上課地點:資542。
限學士班四年級以上
總人數上限:30人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1082ammai20s 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

This course focuses on recent development of machine learning techniques that are promising for solving practical problems in image/video indexing, recognition, comprehension and deep learning. Especially, we will focus on the emerging needs and solutions in very large-scale and diverse media types, sensors, and in-depth deep learning neural networks. The goal is for students to get familiar with the state of the art, learn how to formulate and solve practical image/video learning/indexing, and acquire hands-on experiences through actual experiments. The course will include some topics in depth such as:

- Data augmentation strategies for deep neural networks
- Advanced Face Recognition and Beyond
- Advanced hash learning and optimization
- Manifold learning
- Sparse coding and solvers
- Latent semantic analysis
- Automatic neural network learning (autoML) + structure learning
- Cross-domain (transfer) learning
- Deep comprehension and question and answering
- Efficient computation for neural networks
- Few (zero) shot learning
- Reinforcement learning from sensors and data
- Experience sharing from the domain experts

See more details at the course webpage:
https://winstonhsu.info/ammai-19s/ 

課程目標
- Extending breadths and depths for essential technical components for cognitive computation in feature representations, learning, scalable computation.
- Gaining practical experiences through assignments and experiments.
- Practicing paper critiques, summarization, and presentations 
課程要求
https://winstonhsu.info/ammai-19s/ 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
See more details at the course webpage:
https://winstonhsu.info/ammai-19s/ 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題