課程資訊
課程名稱
機器學習特論
TOPICS IN MACHINE LEARNING 
開課學期
99-1 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
林智仁 
課號
CSIE7435 
課程識別碼
922EU3940 
班次
 
學分
全/半年
半年 
必/選修
選修 
上課時間
星期三6,7,8(13:20~16:20) 
上課地點
資110 
備註
本課程以英語授課。本課程以英語授課。
總人數上限:50人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

OPTIMIZATION TECHNIQUES ARE USED IN ALL KINDS OF MACHINE LEARNING PROBLEMS BECAUSE IN GENERAL WE WOULD LIKE TO MINIMIZE THE TESTING ERROR. THIS COURSE WILL CONTAIN TWO PARTS. THE FIRST PART FOCUSES ON CONVEX OPTIMIZATION TECHNIQUES. WE DISCUSS METHODS FOR LEAST-SQUARES, LINEAR AND QUADRATIC PROGRAMS, SEMIDEFINITE PROGRAMMING, AND OTHERS.
WE ALSO TOUCH THEORY BEHIND THESE METHODS (E.G., OPTIMALITY CONDITIONS AND DUALITY THEORY). IN THE SECOND PART OF THIS COURSE WE WILL INVESTIGATE HOW OPTIMIZATION TECHNIQUES ARE APPLIED TO VARIOUS MACHINE LEARNING PROBLEMS (E.G., SVM, MAXIMUM ENTROPY, CONDITIONAL RANDOM FIELDS, SPARSE RECONSTRUCTION FOR SIGNAL PROCESSING APPLICATIONS). WE FURTHER DISCUSS THAT FOR DIFFERENT MACHINE LEARNING APPLICATIONS HOW TO CHOOSE RIGHT OPTIMIZATION METHODS.
 

課程目標
LEARN HOW TO USE OPTIMIZATION TECHNIQUES FOR SOLVING MACHINE LEARNING PROBLEMS. 
課程要求
 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
CONVEX OPTIMIZATION 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
無資料