課程資訊
課程名稱
比特幣及數據分析
Bitcoin in the Big Data Era 
開課學期
108-1 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
廖世偉 
課號
CSIE5315 
課程識別碼
922EU4260 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期五8,9,10(15:30~18:20) 
上課地點
資104 
備註
初選不開放。本課程以英語授課。
總人數上限:50人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1081CSIE5315 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

1. English version: As AI, mobile, social networks and cloud are booming, AI Big Data has become key element in boosting the productivity and innovation in all industries. This course on AI Big Data consists of three aspects: Analytics, System, and Applications. Because LAP(Large application platforms such as Facebook,Android,Google Search)is important trend today,the emphasis is System AI, which is a system with platform and ecosystem in view.

We emphasize on analytics and AI Computing System. We study real-world LALPs. The roadmap of the course is to start with "analytics mode" that cultivate a platform architect with data science capability. Next, we enter "system mode" to train System AI researchers with big picture. Finally, we end in the "application mode" to train the students to create values and possess the ability to be an entrepreneurial engineer. The LAP era needs talents with the above three modes and industry view.

Because System AI means that we cannot do AI in vacuum, we first select one application: Blockchain technology used in bitcoin and others and its Transaction Analytics. The Big Data era needs to address the challenge of analytics on open data vs privacy. One example is that open blockchain system has moved to emphasize on anonymity and privacy.

Outline of the lectures is as follows:
* What is AI? Big Data?
* Ethics in the Big Data Era: Privacy & Security
* Legality & Legitimacy in the Big Data Era: Privacy & Security
* Map-Reduce
* Big Data Programming
* Genie
* Virtual Assistant & Chatbot
* Big Data analytics
* FinTech & RegTech
* Case Studies
* Bitcoin Anomaly and Bitcoin Tracing

2. Chinese version: 隨著AI, 行動, 社群, 雲端的發展,AI Big Data已成為下一波提升所有產業的生產力與創新性的重要元素。本課程將從分析模式、系統模式、應用模式等面向探討各行各業之AI Big Data系統。因LAP(Large application platforms 如Facebook,Android,Google Search)是現今重要趨勢,其強調具備ecosystem及平台的系統,我們希望此課以分析及AI Computing System為主,探討國際級的真正的Large Application Platforms。本課程先從分析模式來培養懂 data science 的平臺架構師、再從系統模式來訓練有大開大合能力的 System AI researchers、最後再從應用模式的實例讓學生具備有走的出去的價值及能力(entrepreneurial engineer)。LAP 需要以上有整合系統,及垂直綜觀產業能力的人才們都願意開課來幫助帶領台灣軟體能量到新的層次。

因為不能在真空中做象牙塔式的AI,我們開場先選定一個應用:Blockchain technology used in bitcoin and others及其Transaction Analytics. Big Data時代著重analytics 及對open data進行思辨。Open blockchain系統越來越強調匿名性及privacy即為一例。 

課程目標
1. English version: The roadmap of the course is to start with "analytics mode" that cultivate a platform architect with data science capability. Next, we enter "system mode" to train System AI researchers with big picture. Finally, we end in the "application mode" to train the students to create values and possess the ability to be an entrepreneurial engineer. The LAP era needs talents with the above three modes and industry view.

2. Chinese version: 本課程先從分析模式來培養懂 data science 的平臺架構師、再從系統模式來訓練有大開大合能力的 System AI researchers、最後再從應用模式的實例讓學生具備有走的出去的價值及能力(entrepreneurial engineer)。LAP 需要以上有整合系統,及垂直綜觀產業能力的人才們都願意開課來幫助帶領台灣軟體能量到新的層次。

本課程的目標在於讓修課同學:培養同學全面掌握AI Big Data 應用系統之基本能力,鼓勵同學投入發展各行各業的AI Big Data 創新應用系統,有機會與國際級企業家合作落實創新構想於實際企業案例。 
課程要求
Programming, Python 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
Mining of Massive Datasets, by J. Leskovec, A. Rajaraman, J. Ullman, 3rd edition, 2019.

Quantitative Trading, by Xin Guo, T. Lai, Howard Shek, Sam Wong, 2016. 
參考書目
使用講義 
評量方式
(僅供參考)
 
No.
項目
百分比
說明
1. 
Homework 
30% 
(10% per assignment) 
2. 
Midterm 
20% 
 
3. 
Final project 
30% 
 
4. 
Quiz 
20% 
There would be several times random quiz in class 
5. 
Bonus 
40% 
Participation 20%, Attendance 20% 
 
課程進度
週次
日期
單元主題
第1週
9/13  See course website: https://csie.ntu.edu.tw/~bigdata