課程資訊
課程名稱
分散式機器學習系統
Distributed Machine-Learning System 
開課學期
107-1 
授課對象
電機資訊學院  資訊工程學研究所  
授課教師
周承復 
課號
CSIE5319 
課程識別碼
922 U4430 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期三6,7,8(13:20~16:20) 
上課地點
資105 
備註
總人數上限:35人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1071CSIE5319_ 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Distributed Machine-Learning System is an introduction to these system-focused aspects of machine learning, covering guiding principles and commonly used techniques for scaling up to large data sets. That is, we will cover the techniques that lie between a standard machine learning course and an efficient systems implementation. Topics will include stochastic gradient descent, acceleration, variance reduction, methods for choosing metaparameters, parallelization within a chip and across a cluster, popular ML frameworks, and innovations in hardware architectures. 

課程目標
We look at the performance as well as design issues of large-scale machine learning application that is deployed in practice. After taking this course, students, who basic models and the basic algorithms, are able to modify those models (or systems) in a bunch of different ways such that the systems could run faster and more efficiently. That is, these modifications are really important—they often are what make the system tractable to run on the data it needs to process. 
課程要求
待補 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
待補 
參考書目
待補 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題