課程資訊
課程名稱
感知運算
Cognitive Computing 
開課學期
107-1 
授課對象
電機資訊學院  資訊網路與多媒體研究所  
授課教師
徐宏民 
課號
CSIE5420 
課程識別碼
922 U4460 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期二7,8,9(14:20~17:20) 
上課地點
資105 
備註
總人數上限:50人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1071cognitive 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

Cognitive computing refers to systems that learn at scale, reason with purpose, and interact with humans naturally from numerous emerging sensors and signals. Cognitive computing systems are trained to sense, predict, infer, and in some ways, reason, using machine learning algorithms that are operated over large-scale, noisy, and unstructured data streams.

The topic will be essential for current and future industrial needs and academic research opportunities.

Please see the my webpage for more updated course information:

https://winstonhsu.info/2018f-cognitive-computing/

.... 

課程目標
We aim to introduce the state-of-the-art and essential machine learning algorithms for numerous core problems in cognitive computing. We investigate methods for machine perception and the following action planning. We need to deal with the noisy, unstructured, high-dimensional data in rigorous and efficient manners.

We emphasize the hands-on experiences for conducting the course in terms of programming and experimental assignments, midterm, and final projects. We will organize the lecture content from the state-of-the-art and the reading materials will be mostly based on the literatures from top conferences. 
課程要求
本課程的目標在於讓修課同學:
- Preliminarily understanding the design and implementation of cognitive learning algorithms for multimodal signals (including images, videos, audio, and text)
- Understanding basic machine learning tools for learning high-dimensional data for machine perception
- Evaluating the performance of numerous applications in cognitive computing
- Identifying current research problems in machine perception and cognitive computing 
預期每週課後學習時數
 
Office Hours
另約時間 
指定閱讀
 
參考書目
 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
無資料