課程資訊
課程名稱
最佳化演算法
Optimization Algorithms 
開課學期
111-2 
授課對象
理學院  統計與數據科學研究所  
授課教師
李彥寰 
課號
CSIE5410 
課程識別碼
922 U4500 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期二7,8,9(14:20~17:20) 
上課地點
資107 
備註
總人數上限:30人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

This is a *theory* course. There will not be any programming assignment. The students will have to read and write rigorous mathematical proofs.

This course introduces optimization algorithms for machine learning, in particular first-order convex optimization algorithms, for their scalability with respect to the parameter dimension and sample size. The algorithms this course will cover include gradient descent, mirror descent, proximal gradient methods, the Frank-Wolfe method, and if time allows, stochastic mirror descent. The focus will be non-asymptotic error analysis of these algorithms.  

課程目標
After taking this course, the students are expected to
- be familiar with basic concepts in the black-box approach to convex optimization,
- be able to read literature on optimization theory, and
- be able to choose an appropriate optimization algorithm given a problem.  
課程要求
- The students are expected to be motivated enough to take this course.
- The students are expected to be familiar with multivariate calculus, linear algebra, and probability. Knowledge in machine learning or statistics may be helpful but are not necessary.  
預期每週課後學習時數
 
Office Hours
 
指定閱讀
Lecture slides.  
參考書目
- Yu. Nesterov. Lectures on Convex Optimization. 2018.
- S. Bubeck. Convex Optimization: Algorithms and Complexity. 2015.
- A. Beck. First-Order Methods in Optimization. 2017.
- G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. 2020.
- Lecture notes by A. Nemirovski: https://www2.isye.gatech.edu/~nemirovs/ 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
無資料