課程名稱 |
預測、學習、與賽局 Prediction, Learning, and Games |
開課學期 |
109-2 |
授課對象 |
理學院 數學研究所 |
授課教師 |
李彥寰 |
課號 |
CSIE5002 |
課程識別碼 |
922 U4550 |
班次 |
|
學分 |
3.0 |
全/半年 |
半年 |
必/選修 |
選修 |
上課時間 |
星期一7,8,9(14:20~17:20) |
上課地點 |
資105 |
備註 |
Theory course, requiring math maturity. 總人數上限:20人 |
|
|
課程簡介影片 |
|
核心能力關聯 |
核心能力與課程規劃關聯圖 |
課程大綱
|
為確保您我的權利,請尊重智慧財產權及不得非法影印
|
課程概述 |
*This is an advanced course in learning theory.*
The probably approximately correct (PAC) theory has been the standard framework of machine learning for decades, but its underlying “i.i.d. data” assumption results in a significant theory-practice gap. This course introduces online learning theory, whose probability-free nature naturally avoids the aforementioned theory-practice gap. The main focuses are:
- Learning with expert advice.
- Individual sequence prediction.
- Online convex optimization.
- Convergence to equilibria in repeated games.
The tentative schedule can be found below.
The exact contents of this course may change with respect to the latest advances in learning theory and the research interests of the lecturer. |
課程目標 |
本課程的目標在於讓修課同學:
● Be able to read state-of-the literature on learning theory.
● Be able to analyze basic online (learning) algorithms.
● Be able to work on online learning research topics.
● Be able to think beyond the statistical and PAC learning frameworks. |
課程要求 |
Prerequisites: Knowledge in calculus, linear algebra, and probability and interest in theory.
Knowledge in convex optimization, learning theory, and/or statistics can be helpful but not necessary. |
預期每週課後學習時數 |
|
Office Hours |
|
指定閱讀 |
待補 |
參考書目 |
1. N. Cesa-Bianchi and G. Lugosi. 2006. Prediction, Learning, and Games.
2. S. Shalev-Shwartz. 2011. Online Learning and Online Convex Optimization.
3. S. Bubeck. 2011. Introduction to Online Optimization.
4. V. V. V’yugin. 2012. Lecture Notes on Machine Learning and Prediction.
5. S. Hart and A. Mas-Colell. 2013. Simple Adaptive Strategies.
6. A. Rakhlin and K. Sridharan. 2014. Statistical Learning and Sequential Prediction.
7. E. Hazan. 2015. Introduction to Online Convex Optimization.
8. A. Slivkins. 2018. Introduction to multi-armed bandits.
9. T. Lattimore and C. Szepesvari. 2018. Bandit Algorithms. |
評量方式 (僅供參考) |
|
|