課程資訊
課程名稱
線上凸最佳化
Online Convex Optimization 
開課學期
112-1 
授課對象
電機資訊學院  資訊網路與多媒體研究所  
授課教師
李彥寰 
課號
CSIE5062 
課程識別碼
922 U4790 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期一8,9,10(15:30~18:20) 
上課地點
資107 
備註
總人數上限:20人 
 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

**This is a theory course. You will need to read and write mathematical proofs. There will not be any coding assignments.**

Online convex optimization (OCO) is an interdisciplinary topic, lying at the intersection of machine learning, game theory, and optimization. In machine learning, OCO is a theoretical paradigm that is different from yet has close relationship with statistical learning. In game theory, OCO naturally arises in learning-in-games studies and offers numerical algorithms computing game equilibria. In optimization, OCO provides new ideas in the design of stochastic and adaptive optimization algorithms; the most famous instance is perhaps AdaGrad.

This course aims to introduce basic OCO concepts and algorithms to the students. Tentative topics include
- Basic convex analysis.
- Online-to-batch conversion.
- Follow-the-leader-type algorithms.
- Online mirror descent.
- Solving min-max problems by learning dynamics.
- Adaptive online convex optimization.

The topics may change with respect to the latest development in OCO. 

課程目標
After taking this course, the students are expected to:
- Understand the relation between statistical and online learning paradigms,
- Be familiar with basic online convex optimization algorithms and their performance analyses, and
- Be able to read literature on online convex optimization. 
課程要求
The students are expected to be familiar with calculus, linear algebra, and probability. Knowledge in machine learning, convex optimization, and statistics can be helpful but is not necessary. 
預期每週課後學習時數
 
Office Hours
 
指定閱讀
 
參考書目
Main reference:
- F. Orabona. A modern introduction to online learning. 2022. (arXiv:1912.13213)

Other references:
- S. Bubeck. Introduction to Online Optimization. 2011. (http://sbubeck.com/BubeckLectureNotes.pdf)
- S. Shalev-Shwartz. Online Learning and Online Convex Optimization. 2012. (https://www.cs.huji.ac.il/~shais/papers/OLsurvey.pdf)
- E. Hazan. Introduction to Online Convex Optimization. 2021. (arXiv:1909.05207) 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
無資料