課程資訊
課程名稱
凸函數最佳化
Convex Optimization 
開課學期
108-2 
授課對象
電機資訊學院  電機工程學研究所  
授課教師
蘇柏青 
課號
CommE5050 
課程識別碼
942 U0640 
班次
 
學分
3.0 
全/半年
半年 
必/選修
選修 
上課時間
星期四7,8,9(14:20~17:20) 
上課地點
明達205 
備註
總人數上限:120人 
Ceiba 課程網頁
http://ceiba.ntu.edu.tw/1082cvx 
課程簡介影片
 
核心能力關聯
核心能力與課程規劃關聯圖
課程大綱
為確保您我的權利,請尊重智慧財產權及不得非法影印
課程概述

本課程探討現代數學最佳化(Mathematical Optimization)問題之演算法及理論基礎。數學最佳化可以應用到極多工程、科學等相關領域。其中,凸最佳化(Convex Optimization,或譯"凸優化")這一類型的問題為本課程探討的重點,其具有局部最佳解即為全域最佳解的特點。本課程將介紹凸集合(Convex Sets)、凸函數(Convex functions)、凸最佳化問題(Convex optimization)之定義及各種性質,再透過二元性(duality)、KKT conditions的理論觀點了解最佳解的條件。最後介紹內點法的原理以及如何以多項式時間來求解凸最佳化的問題。 

課程目標
1. 學習判斷凸集合、凸函數、凸最佳化問題。
2. 學習判斷最佳解之理論基礎。
3. 學習應用凸最佳化之原理及工具至自己研究領域的問題。 
課程要求
適合線性代數、微積分等基礎科目紥實的同學修習。 
Office Hours
 
參考書目
References:
[2] C.-Y. Chi, W.-C. Li, and C.-H. Lin, "Convex Optimization for Signal Processing and
Communications: From Fundamentals to Applications," CRC Press, 2017.
[3] J. Dattorro, "Convex optimization & Euclidean distance geometry," Me- boo Publishing,
2016. 
指定閱讀
[1] S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, 2004 
評量方式
(僅供參考)
   
課程進度
週次
日期
單元主題
第1週
3/05  Course Introduction Convex Sets (I) 
第2週
3/12  Convex Sets (II) 
第3週
3/19  Convex Functions (I) 
第4週
3/26  Quiz 1 (取消) Convex Fucntions (II) Convex Optimization Problems 
第5週
4/02  春假(溫書假) 
第6週
4/09  Convex Optimization Problems 
第7週
4/16  Generalized Inequality 
第8週
4/23  (Midterm) 
第9週
4/30  Chapter 5: Duality (I) ( We will catch up with what we had left behind in the previous lecture about generalized inequality before proceeding our discussions on duality) 
第10週
5/07  Duality (II) 
第11週
5/14  Duality (III) Unconstrained Minimization (I) 
第12週
5/21  Quiz 2 Unconstrained Minimization (II) 
第13週
5/28  Equality-Constrained Minimization 
第14週
6/04  Interior Point Methods 
第15週
6/11  (Final exam) 
第16週
6/18  彈性授課: Final presentations (無遠端授課;僅在教室裡進行) 
第17週
6/25  (端午節放假一週) 
第18週
7/2  彈性授課