Course Information
Course title
電腦視覺
Computer Vision: from recognition to geometry 
Semester
107-1 
Designated for
COLLEGE OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE  GRADUATE INSTITUTE OF COMMUNICATION ENGINEERING  
Instructor
簡韶逸 
Curriculum Number
EEE5053 
Curriculum Identity Number
943 U0550 
Class
 
Credits
3.0 
Full/Half
Yr.
Half 
Required/
Elective
Elective 
Time
Wednesday 7,8,9(14:20~17:20) 
Room
電二143 
Remarks
與王鈺強合授
The upper limit of the number of students: 80. 
Ceiba Web Server
http://ceiba.ntu.edu.tw/1071CV 
Course introduction video
 
Table of Core Capabilities and Curriculum Planning
Table of Core Capabilities and Curriculum Planning
Course Syllabus
Please respect the intellectual property rights of others and do not copy any of the course information without permission
Course Description

本課程的內容涵蓋電腦視覺的多個面向,從image processing, recognition/detection, 到geometry等方向都在課程內容之中,期能讓修課同學對電腦視覺領域有完整的認識。
課程網要如下:
Introduction to human vision systems
Camera basic, image formation and basic Image processing
Feature detection and matching
Machine learning basics
Deep learning basics
Recognition and detection
Segmentation
Projective Geometry, Transformations and Estimation/Camera calibration
Camera Geometry and Single View Geometry
Two-View Geometry
Dense motion estimation/stereo
Structure from motion
3D reconstruction/depth sensing
Computational photography
Object tracking
Advanced topics in CV

Course Objective
本課程的內容涵蓋電腦視覺的多個面向,從image processing, recognition/detection, 到geometry等方向都在課程內容之中,期能讓修課同學對電腦視覺領域有完整的認識。

本課程和另外一門課程Deep Learning for Computer Vision互相搭配,兩們課皆修將可對此領域有全盤且深入的學習。 
Course Requirement
需具備基本程式設計能力,本課程可能會使用C/C++/Python進行實作 
Student Workload (expected study time outside of class per week)
 
Office Hours
Appointment required. 
Designated reading
使用自編之講義,部分內容由參考書目而來。 
References
Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 2011.

Richard Hartley and Andrew Zisserman, Multiple View Geometry in Computer Vision, Second Edition, Cambridge, 2003.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning, The MIT Press, 2016.


 
Grading
 
No.
Item
%
Explanations for the conditions
1. 
作業 
60% 
四次程式作業 
2. 
分組期末專題 
35% 
定題式期末專題,最多三人一組 
3. 
上課情況 
5% 
上課平時成績 
 
Progress
Week
Date
Topic
第1週
9/12  Introduction to human vision systems 
第2週
9/19  Camera basic, image formation and basic Image processing 
第3週
9/26  Feature detection and matching 
第4週
10/03  Machine learning basics 
第5週
10/10  國慶日放假 
第6週
10/17  Deep learning basics 
第7週
10/24  Recognition and detection 
第8週
10/31  Segmentation 
第9週
11/07  Projective Geometry, Transformations and Estimation/Camera calibration 
第10週
11/14  Camera Geometry and Single View Geometry 
第11週
11/21  Two-View Geometry 
第12週
11/28  Dense motion estimation/stereo 
第13週
12/05  Structure from motion 
第14週
12/12  3D reconstruction/depth sensing 
第15週
12/19  Computational photography 
第16週
12/26  Object tracking 
第17週
1/02  Advanced topics in CV